Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(33): 16636-16644, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37646009

RESUMO

Even though confinement was identified as a common element of selective catalysis and simulations predicted enhanced properties of adsorbates within microporous materials, experimental results on the characterization of the adsorbed phase are still rare. In this study, we provide experimental evidence of the increase of propene density in the channels of Zn-MOF-74 by 16(2)% compared to the liquid phase. The ordered propene molecules adsorbed within the pores of the MOF have been localized by in situ neutron powder diffraction, and the results are supported by adsorption studies. The formation of a second adsorbate layer, paired with nanoconfinement-induced short intermolecular distances, causes the efficient packing of the propene molecules and results in an increase of olefin density.

2.
Angew Chem Int Ed Engl ; 62(40): e202305140, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37314832

RESUMO

The methane-to-methanol (MtM) conversion via the oxygen looping approach using copper-exchanged zeolites has been extensively studied over the last decade. While a lot of research has focussed on maximizing yield and selectivity, little has been directed toward productivity-a metric far more meaningful for evaluating industrial potential. Using copper-exchanged zeolite omega (Cu-omega), a material highly active and selective for the MtM conversion using the isothermal oxygen looping approach, we show that this material exhibits unprecedented potential for industrial valorization. In doing so, we also present a novel methodology combining operando XAS and mass spectrometry for the screening of materials for the MtM conversion in oxygen looping mode.

3.
J Phys Chem C Nanomater Interfaces ; 126(41): 17589-17597, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36304669

RESUMO

Oxides are essential catalysts and supports for noble metal catalysts. Their interaction with hydrogen enables, e.g., their use as a hydrogenation catalyst. Among the oxides considered reducible, substantial differences exist in their capability to activate hydrogen and how the oxide structure transforms due to this interaction. Noble metals, like platinum, generally enhance the oxide reduction by hydrogen spillover. This work presents a systematic temperature-programmed reduction study (300 to 873 K) of iron oxide, ceria, titania, zirconia, and alumina, with and without supported platinum. For all catalysts, platinum enhances the reducibility of the oxide. However, there are pronounced differences among all catalysts.

4.
Angew Chem Int Ed Engl ; 61(29): e202205413, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35513343

RESUMO

Unveiling the coke formation in zeolites is an essential prerequisite for tackling the deactivation of these catalysts in the transformations of hydrocarbons. Herein, we present the direct mapping of coke in the micropores of ZSM-5 catalysts used in methanol-to-hydrocarbons conversion by single-crystal electron diffraction analysis. The latter technique revealed a polycyclic aromatic structure along the straight channel, wherein the high-quality data permit refinement of its occupancy to about 40 %. These findings were exploited to analyze the evolution of micropore coke during the reaction. Herein, coke-associated signals, which correlate with the activity loss, indicate that the nucleation of coke commences in the intersections of sinusoidal and straight channels, while the formation of coke in the straight pores occurs in the late stages of deactivation. The findings uncover an attractive method for analyzing coke deposition in the micropore domain.

5.
Angew Chem Int Ed Engl ; 61(15): e202200301, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107196

RESUMO

The copper-zinc-alumina (CZA) catalyst is one of the most important catalysts. Nevertheless, understanding of the complex CZA structure is still limited and hampers further optimization. Critical to the production of a highly active and stable catalyst are optimal start-up procedures in hydrogen. Here, by employing operando X-ray absorption spectroscopy and X-ray diffraction, we follow how the industrial CZA precursor evolves into the working catalyst. Two major events in the activation drastically alter the copper- and zinc-containing components in the CZA catalyst and define the final working catalyst structure: the reduction of the starting copper(II) oxide, and the ripening and re-oxidation of zinc oxide upon the switch to catalytic conditions. These drastic events are also accompanied by other gradual, structural changes. Understanding what happens during these events is key to develop tailored start-up protocols that are aimed at maximal longevity and activity of the catalysts.

6.
Chem Commun (Camb) ; 58(19): 3174-3177, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171192

RESUMO

The resilience of ancient DNA (aDNA) in bone gives rise to the preservation of synthetic DNA with bioinorganic materials such as calcium phosphate (CaP). Accelerated aging experiments at elevated temperature and humidity displayed a positive effect of co-precipitated, crystalline dicalcium phosphate on the stability of synthetic DNA in contrast to amorphous CaP. Quantitative PXRD in combination with SEM and EDX measurements revealed distinct CaP phase transformations of calcium phosphate dihydrate (brushite) to anhydrous dicalcium phosphate (monetite) influencing DNA stability.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , DNA/química , Teste de Materiais
7.
J Am Chem Soc ; 143(43): 17926-17930, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695360

RESUMO

The location of aluminum in a zeolite framework structure defines the accessibility and geometry of the catalytically active sites, but determining this location crystallographically is fraught with difficulties. Typical zeolite catalysts contain only a small amount of aluminum, and the X-ray scattering factors for silicon and aluminum are very similar. To address this problem, we have exploited the properties of resonant X-ray powder diffraction across the Al K edge, where the aluminum scattering factor changes dramatically. By combining conventional synchrotron powder diffraction data with those collected at energies near the X-ray absorption edge, aluminum is highlighted. In this way, the different distributions of aluminum in two FER-type zeolites with identical chemical compositions but different catalytic properties could be determined unambiguously. The results are consistent with previous studies, but quantitative. This approach constitutes a major advance in our fundamental understanding of the relationship between zeolite structure and catalytic activity.

8.
Environ Sci Technol ; 55(8): 4183-4189, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33666422

RESUMO

Energy supply limits development through fuel constraints and climatic effects. Production of renewable energy is a central pillar of sustainability but will need to play an increasingly important role in energy generation in order to mitigate fossil-fuel based greenhouse-gas emissions. Global freshwaters represent a vast reservoir of biomass and biogenic CH4. Here we demonstrate the great potential for the optimized use of this nonfossil carbon as a source of energy that is replenishable within a human lifetime. The feasibility of up-scaled adsorption-driven technologies to capture and refine aqueous CH4 still awaits verification, yet recent estimates of global freshwater CH4 production imply that the worldwide energy demand could be satisfied by using the "biofuel" building up in lakes and wetlands. Biogenic CH4 is mostly generated from biomass produced through atmospheric CO2 uptake. Its exploitation in freshwaters can thus secure large amounts of carbon-neutral energy, helping to sustain the planetary equilibrium.


Assuntos
Gases de Efeito Estufa , Metano , Dióxido de Carbono/análise , Combustíveis Fósseis , Água Doce , Humanos , Metano/análise , Áreas Alagadas
9.
RSC Adv ; 11(61): 38849-38855, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493258

RESUMO

UiO-66 is a versatile zirconium-based MOF, which is thermally stable up to 500 °C. In the present work, the thermal degradation of UiO-66 with a high number of defects has been studied in inert, oxidative and reductive environments. A sample of UiO-66 with a high BET surface area of 1827 m2 g-1 was prepared, which contains 2.3 missing linkers per hexa-zirconium node, as calculated by the thermogravimetric curve. The crystalline framework of this UiO-66 sample collapses at 250 °C, while thermal decomposition starts at 450 °C in the oxidative environment and at 500 °C in the reductive and inert environments. The BET surface area of the MOF is affected variably by heating under different gaseous conditions. Under inert conditions, porosity is maintained up to 711 m2 g-1, which is quite high when compared to that under reductive (527 m2 g-1) or oxidative (489 m2 g-1) conditions. Upon complete thermal decomposition at 600 °C, the MOF produces predominantly tetragonal zirconia. TEM images of the thermally decomposed samples show that the shape of the original MOF crystal is maintained during the heating process in the inert and reductive environments, whereas under oxidative conditions, all of the carbon is burnt to carbon dioxide, leaving no carbon matrix as the support.

10.
Nat Commun ; 11(1): 3220, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591532

RESUMO

Heterogeneous catalysts play a pivotal role in the chemical industry. The strong metal-support interaction (SMSI), which affects the catalytic activity, is a phenomenon researched for decades. However, detailed mechanistic understanding on real catalytic systems is lacking. Here, this surface phenomenon was studied on an actual platinum-titania catalyst by state-of-the-art in situ electron microscopy, in situ X-ray photoemission spectroscopy and in situ X-ray diffraction, aided by density functional theory calculations, providing a novel real time view on how the phenomenon occurs. The migration of reduced titanium oxide, limited in thickness, and the formation of an alloy are competing mechanisms during high temperature reduction. Subsequent exposure to oxygen segregates the titanium from the alloy, and a thicker titania overlayer forms. This role of oxygen in the formation process and stabilization of the overlayer was not recognized before. It provides new application potential in catalysis and materials science.

11.
Langmuir ; 35(40): 12971-12978, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31510744

RESUMO

Carbon dioxide must be removed from biogas or natural gas to obtain compressed or liquefied methane, and adsorption-driven isolation of CO2 could be improved by developing new adsorbents. Zeolite adsorbents can select CO2 over CH4, and the adsorption of CH4 on zeolite |Na12-xKx|-A is significantly lower for samples with a high K+ content, i.e., x > 2. Nevertheless, we show, using 1H NMR experiments, that these zeolites adsorb CH4 after long equilibration times. Pulsed-field gradient NMR experiments indicated that in large crystals of zeolites |Na12-xKx|-A, the long-time diffusion coefficients of CH4 did not vary with x, and the upper limit of the mean-square displacement was about 1.5 µm, irrespective of the diffusion time. Also for zeolite |Na12|-A samples of three different particle sizes (∼0.44, ∼2.9, and ∼10.6 µm), the upper limit of the mean-square displacement of CH4 was 1.5 µm and largely independent of the diffusion time. This similarity provided further evidence for an intracrystalline diffusion restriction for CH4 within the medium- and large-sized zeolite A crystals and possibly of clustering and close contact among the small zeolite A crystals. The upper limit of the long-time diffusion coefficient of adsorbed CH4 was (at 1 atm and 298 K) about 10-10 m2/s irrespective of the size of the zeolite particle or the studied content of K+ in zeolites |Na12-xKx|-A and |Na12|-A. The T1 relaxation time for adsorbed CH4 on zeolites |Na12-xKx|-A with x > 2 was smaller than for those with x < 2, indicating that the short-time diffusion of CH4 was hindered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...